

RODRIGO ADOLFO REYES FEREGRINO

rodrigo.reyesferegrino@mail.utoronto.ca ◊ www.linkedin.com/in/rodrigo-reyes-feregrino ◊ 437-551-9980

EDUCATION

Honours Bachelor of Science + PEY Co-op , University of Toronto	Expected graduation May 2026
<ul style="list-style-type: none">• Double major: Computer Science and Chemistry minor: Philosophy Entrance Scholarship.• Related coursework: software design, software tools and systems programming, enriched data structures, algorithm design, analysis and complexity, introduction to Machine Learning, Computational Chemistry.	

SKILLS

Technical Skills: Programming languages: Python, Java, C, C++ Data analysis and visualization: Numpy, Pandas, COBRApy, SciPy, Scikit-learn, Plotly, Matplotlib, Seaborn Other tools: Docker, Conda, Unix, Git.
Languages: Spanish(native), English(C2 - Proficient), and German(C1 - Fluent)

EXPERIENCE

Co-op Student: Bioinformatics software engineer Sanofi Pasteur Canada - R&D in Molecular Biology Centre	May 2024 - April 2025 Toronto, Canada
<ul style="list-style-type: none">• Analyze large genomics datasets, including high-throughput sequencing data (up to 4.5 BILLION reads of DNA fragments per batch) by harnessing Linux scripting, Python and sequence alignment algorithms.• Actively participate in the development, testing, and optimization of data processing pipelines and internal software tools, deployed in clusters running in hybrid cloud-computing platforms.• My analysis produced valuable insight, impacting over 500 million customers in 150+ countries.	
Dry Lab Lead, iGEM Competition iGEM Toronto group, University of Toronto	March 2023 - January 2024 Toronto, Canada
<ul style="list-style-type: none">• Led a sub-team of 8 members in the design and implementation of a metabolic engineering research project, presented at the International Genetically Engineered Machine (iGEM) competition. See project webpage• Utilized genome-scale metabolic models and linear programming optimization to predict genetic modifications that enhance the efficiency of bacterial metabolic networks. Evaluated over 12,000 genetic variations.• Won gold medal and prize for best computational model out of over 400 teams from top universities worldwide.	

Summer Researcher: Quantum Computing University of Toronto	May 2024 - ongoing Toronto, Canada
<ul style="list-style-type: none">• Investigate - under Professor Nathan Wiebe - applications of quantum computing to chemical systems.• Focus on quantum algorithms for Hamiltonian simulation, such as QDRIFT, Phase-estimation, Trotter-Suzuki decompositions, Linear Combination Of Unitaries and truncated Taylor series.	

Database developer Canadian Statistical Sciences Institute (CANSSI) Ontario	October 2023 - April 2024 Toronto, Canada
<ul style="list-style-type: none">• Capture, enter and analyze data related to CANSSI Ontario operations and events by harnessing existing software (FileMaker, Alchemer, MySQL) as well as creating my own tools with diverse Python libraries.• Improved systems and pipelines for database management, as well as for data cleaning and curation, as measured by a 40% decrease in time taken to generate the annual reports.	

PROJECTS

News article popularity predictor (ML-powered) web app	Feb 2024
<ul style="list-style-type: none">• Full-stack web app developed during a hackathon, for predicting news article popularity .Extracts 58 features through web-scraping, including sentiment analysis using NLP, achieving over 70% validation accuracy.• Trained and compared different Machine-Learning models (decision tree, linear regression, and random forest regression) on 40,000 data points, using the number of times shared as target vector. see slideshow	
Open-source computational tool for bacterial strain design: COBRA-FSEOF	Jan 2024
<ul style="list-style-type: none">• Developed a COBRApy implementation of the FSEOF (Flux Scanning based on Enforced Objective Flux) algorithm, based on the work of Choi et al. (2010). Check out our GitHub: igem-toronto/cobra-fseof	
Time management software aimed at students	September - December 2022

- Built Calendar-like tool in Java with a team, aimed at the needs of university students -allows users to account for commute time, track studying habits, set goals, etc. It has over 100 different classes and 7 different use cases.

AWARDS

- Summer Undergraduate Data Science (SUDS) research scholarship (7,200 dollars) June 2024
- **Gold Medal**, Best Model Award, and Nominations for Best Climate Crisis Project, Wiki, Integrated Human Practices, Entrepreneurship, and Presentation, iGEM October 2023
- **Gold Medal** and Nomination for Best Conservation Project ("On-site early diagnostic tool for Oak Wilt disease") , iGEM October 2022